1,615 research outputs found

    Phase Transitions in Quantum Dots

    Get PDF
    We perform Hartree-Fock calculations to show that quantum dots (i.e. two dimensional systems of up to twenty interacting electrons in an external parabolic potential) undergo a gradual transition to a spin-polarized Wigner crystal with increasing magnetic field strength. The phase diagram and ground state energies have been determined. We tried to improve the ground state of the Wigner crystal by introducing a Jastrow ansatz for the wavefunction and performing a variational Monte Carlo calculation. The existence of so called magic numbers was also investigated. Finally, we also calculated the heat capacity associated with the rotational degree of freedom of deformed many-body states.Comment: 14 pages, 7 postscript figure

    New Insights into Uniformly Accelerated Detector in a Quantum Field

    Get PDF
    We obtained an exact solution for a uniformly accelerated Unruh-DeWitt detector interacting with a massless scalar field in (3+1) dimensions which enables us to study the entire evolution of the total system, from the initial transient to late-time steady state. We find that the Unruh effect as derived from time-dependent perturbation theory is valid only in the transient stage and is totally invalid for cases with proper acceleration smaller than the damping constant. We also found that, unlike in (1+1)D results, the (3+1)D uniformly accelerated Unruh-DeWitt detector in a steady state does emit a positive radiated power of quantum nature at late-times, but it is not connected to the thermal radiance experienced by the detector in the Unruh effect proper.Comment: 6 pages, invited talk given by SYL at the conference of International Association for Relativistic Dynamics (IARD), June 2006, Storrs, Connecticut, US

    An observation of spin-valve effects in a semiconductor field effect transistor: a novel spintronic device

    Full text link
    We present the first spintronic semiconductor field effect transistor. The injector and collector contacts of this device were made from magnetic permalloy thin films with different coercive fields so that they could be magnetized either parallel or antiparallel to each other in different applied magnetic fields. The conducting medium was a two dimensional electron gas (2DEG) formed in an AlSb/InAs quantum well. Data from this device suggest that its resistance is controlled by two different types of spin-valve effect: the first occurring at the ferromagnet-2DEG interfaces; and the second occuring in direct propagation between contacts.Comment: 4 pages, 2 figure

    Local Charge Excesses in Metallic Alloys: a Local Field Coherent Potential Approximation Theory

    Full text link
    Electronic structure calculations performed on very large supercells have shown that the local charge excesses in metallic alloys are related through simple linear relations to the local electrostatic field resulting from distribution of charges in the whole crystal. By including local external fields in the single site Coherent Potential Approximation theory, we develop a novel theoretical scheme in which the local charge excesses for random alloys can be obtained as the responses to local external fields. Our model maintains all the computational advantages of a single site theory but allows for full charge relaxation at the impurity sites. Through applications to CuPd and CuZn alloys, we find that, as a general rule, non linear charge rearrangements occur at the impurity site as a consequence of the complex phenomena related with the electronic screening of the external potential. This nothwithstanding, we observe that linear relations hold between charge excesses and external potentials, in quantitative agreement with the mentioned supercell calculations, and well beyond the limits of linearity for any other site property.Comment: 11 pages, 1 table, 7 figure

    Current and Spin-Torque in Double Tunnel Barrier Ferromagnet - Superconductor - Ferromagnet Systems

    Full text link
    We calculate the current and the spin-torque in small symmetric double tunnel barrier ferromagnet - superconductor - ferromagnet (F-S-F) systems. Spin-accumulation on the superconductor governs the transport properties when the spin-flip relaxation time is longer than the transport dwell time. In the elastic transport regime, it is demonstrated that the relative change in the current (spin-torque) for F-S-F systems equals the relative change in the current (spin-torque) for F-N-F systems upon changing the relative magnetization direction of the two ferromagnets. This differs from the results in the inelastic transport regime where spin-accumulation suppresses the superconducting gap and dramatically changes the magnetoresistance [S. Takahashi, H. Imamura, and S. Maekawa, Phys. Rev. Lett. 82, 3911 (1999)]. The experimental relevance of the elastic and inelastic transport regimes, respectively, as well as the reasons for the change in the transport properties are discussed.Comment: 7 page

    Paraxial propagation of a quantum charge in a random magnetic field

    Full text link
    The paraxial (parabolic) theory of a near forward scattering of a quantum charged particle by a static magnetic field is presented. From the paraxial solution to the Aharonov-Bohm scattering problem the transverse transfered momentum (the Lorentz force) is found. Multiple magnetic scattering is considered for two models: (i) Gaussian δ\delta -correlated random magnetic field; (ii) a random array of the Aharonov-Bohm magnetic flux line. The paraxial gauge-invariant two-particle Green function averaged with respect to the random field is found by an exact evaluation of the Feynman integral. It is shown that in spite of the anomalous character of the forward scattering, the transport properties can be described by the Boltzmann equation. The Landau quantization in the field of the Aharonov-Bohm lines is discussed.Comment: Figures and references added. Many typos corrected. RevTex, 25 pages, 9 figure

    Screened Coulomb interactions in metallic alloys: I. Universal screening in the atomic sphere approximation

    Get PDF
    We have used the locally self-consistent Green's function (LSGF) method in supercell calculations to establish the distribution of the net charges assigned to the atomic spheres of the alloy components in metallic alloys with different compositions and degrees of order. This allows us to determine the Madelung potential energy of a random alloy in the single-site mean field approximation which makes the conventional single-site density-functional- theory coherent potential approximation (SS-DFT-CPA) method practically identical to the supercell LSGF method with a single-site local interaction zone that yields an exact solution of the DFT problem. We demonstrate that the basic mechanism which governs the charge distribution is the screening of the net charges of the alloy components that makes the direct Coulomb interactions short-ranged. In the atomic sphere approximation, this screening appears to be almost independent of the alloy composition, lattice spacing, and crystal structure. A formalism which allows a consistent treatment of the screened Coulomb interactions within the single-site mean-filed approximation is outlined. We also derive the contribution of the screened Coulomb interactions to the S2 formalism and the generalized perturbation method.Comment: 28 pages, 8 figure
    • …
    corecore